1. Introduction his report presents estimates by the United States government of U.S. anthropogenic greenhouse gas emissions and sinks for the years 1990 through 2006. A summary of these estimates is provided in Table 2-1 and Table 2-2 by gas and source category in the Trends in Greenhouse Gas Emissions chapter. The emission estimates in these tables are presented on both a full molecular mass basis and on a Global Warming Potential (GWP) weighted basis in order to show the relative contribution of each gas to global average radiative forcing. This report also discusses the methods and data used to calculate these emission estimates. In 1992, the United States signed and ratified the United Nations Framework Convention on Climate Change (UNFCCC). As stated in Article 2 of the UNFCCC, "The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner."^{2, 3} Parties to the Convention, by ratifying, "shall develop, periodically update, publish and make available...national inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol, using comparable methodologies...." The United States views this report as an opportunity to fulfill these commitments under the UNFCCC. In 1988, preceding the creation of the UNFCCC, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) jointly established the Intergovernmental Panel on Climate Change (IPCC). The role of the IPCC is to assess on a comprehensive, objective, open and transparent basis the scientific, technical and socioeconomic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts and options for adaptation and mitigation (IPCC 2003). Under Working Group 1 of the IPCC, nearly 140 scientists and national experts from more than thirty countries collaborated in the creation of the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/UNEP/OECD/IEA 1997) to ensure that the emission inventories submitted to the UNFCCC are consistent and comparable between nations. The IPCC accepted the *Revised 1996 IPCC Guidelines* at its Twelfth Session (Mexico City, September 11–13, 1996). This report presents information in accordance with these ¹ See the section below entitled *Global Warming Potentials* for an explanation of GWP values. ²The term "anthropogenic", in this context, refers to greenhouse gas emissions and removals that are a direct result of human activities or are the result of natural processes that have been affected by human activities (IPCC/UNEP/OECD/IEA 1997). ³ Article 2 of the Framework Convention on Climate Change published by the UNEP/WMO Information Unit on Climate Change. See http://unfccc.int. (UNEP/WMO 2000) ⁴ Article 4(1)(a) of the United Nations Framework Convention on Climate Change (also identified in Article 12). Subsequent decisions by the Conference of the Parties elaborated the role of Annex I Parties in preparing national inventories. See http://unfccc.int>. guidelines. In addition, this Inventory is in accordance with the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories and the Good Practice Guidance for Land Use, Land-Use Change, and Forestry, which further expanded upon the methodologies in the Revised 1996 IPCC Guidelines. The IPCC has also accepted the 2006 Guidelines for National Greenhouse Gas Inventories (IPCC 2006) at its Twenty-Fifth Session (Mauritius, April 2006). The 2006 IPCC Guidelines build on the previous bodies of work and include new sources and gases "...as well as updates to the previously published methods whenever scientific and technical knowledge have improved since the previous guidelines were issued." Many of the methodological improvements presented in the 2006 Guidelines have been adopted in this Inventory. Overall, this Inventory of anthropogenic greenhouse gas emissions provides a common and consistent mechanism through which Parties to the UNFCCC can estimate emissions and compare the relative contribution of individual sources, gases, and nations to climate change. The structure of this report is consistent with the current UNFCCC Guidelines on Annual Inventories (UNFCCC 2006). # 1.1. Background Information ### **Greenhouse Gases** Although the earth's atmosphere consists mainly of oxygen and nitrogen, neither plays a significant role in enhancing the greenhouse effect because both are essentially transparent to terrestrial radiation. The greenhouse effect is primarily a function of the concentration of water vapor, carbon dioxide (CO₂), and other trace gases in the atmosphere that absorb the terrestrial radiation leaving the surface of the earth (IPCC 2001). Changes in the atmospheric concentrations of these greenhouse gases can alter the balance of energy transfers between the atmosphere, space, land, and the oceans.⁵ A gauge of these changes is called radiative forcing, which is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the earth-atmosphere system (IPCC 2001). Holding everything else constant, increases in greenhouse gas concentrations in the atmosphere will produce positive radiative forcing (i.e., a net increase in the absorption of energy by the earth). Climate change can be driven by changes in the atmospheric concentrations of a number of radiatively active gases and aerosols. We have clear evidence that human activities have affected concentrations, distributions and life cycles of these gases (IPCC 1996). Naturally occurring greenhouse gases include water vapor, CO₂, methane (CH₄), nitrous oxide (N₂O), and ozone (O₃). Several classes of halogenated substances that contain fluorine, chlorine, or bromine are also greenhouse gases, but they are, for the most part, solely a product of industrial activities. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are halocarbons that contain chlorine, while halocarbons that contain bromine are referred to as bromofluorocarbons (i.e., halons). As stratospheric ozone depleting substances, CFCs, HCFCs, and halons are covered under the Montreal Protocol on Substances that Deplete the Ozone Layer. The UNFCCC defers to this earlier international treaty. Consequently, Parties to the UNFCCC are not required to include these gases in national greenhouse gas inventories. 6 Some other fluorine-containing halogenated substances—hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆)—do not deplete stratospheric ozone but are potent greenhouse gases. These latter substances are addressed by the UNFCCC and accounted for in national greenhouse gas inventories. There are also several gases that, although they do not have a commonly agreed upon direct radiative forcing effect, do influence the global radiation budget. These tropospheric gases include carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and tropospheric (ground level) O₃. Tropospheric ozone is formed by two precursor pollutants, volatile organic compounds (VOCs) and nitrogen oxides (NO_x) in the presence of ultraviolet light (sunlight). Aerosols are extremely small particles or liquid droplets that are often composed of sulfur compounds, carbonaceous combustion products, crustal materials and other human induced pollutants. They can affect the absorptive characteristics of the atmosphere. Comparatively, however, the level of scientific understanding of aerosols is still very low (IPCC 2001). ⁵ For more on the science of climate change, see NRC (2001). ⁶ Emission estimates of CFCs, HCFCs, halons and other ozone-depleting substances are included in this document for informational purposes. Table 1-1: Global Atmospheric Concentration, Rate of Concentration Change, and Atmospheric Lifetime (years) of Selected Greenhouse Gases | Atmospheric Variable | CO ₂ | CH ₄ | N ₂ O | SF ₆ | CF ₄ | |------------------------------------------|---------------------|-----------------|------------------|---------------------|---------------------| | Pre-industrial atmospheric concentration | 278 ppm | 0.715 ppm | 0.270 ppm | 0 ppt | 40 ppt | | Atmospheric concentration ^a | 379 ppm | 1.774 ppm | 0.319 ppm | 5.6 ppt | 74 ppt | | Rate of concentration change | 1.4 ppm/yr | 0.005 ppm/yra | 0.26% yr | Linear ^b | Linear ^b | | Atmospheric lifetime ^c | 50-200 ^d | 12e | 114 ^e | 3,200 | >50,000 | Source: Pre-industrial atmospheric concentrations, current atmospheric concentrations, and rate of concentration changes for all gases are from IPCC (2007). CO₂, CH₄, and N₂O are continuously emitted to and removed from the atmosphere by natural processes on Earth. Anthropogenic activities, however, can cause additional quantities of these and other greenhouse gases to be emitted or sequestered, thereby changing their global average atmospheric concentrations. Natural activities such as respiration by plants or animals and seasonal cycles of plant growth and decay are examples of processes that only cycle carbon or nitrogen between the atmosphere and organic biomass. Such processes, except when directly or indirectly perturbed out of equilibrium by anthropogenic activities, generally do not alter average atmospheric greenhouse gas concentrations over decadal timeframes. Climatic changes resulting from anthropogenic activities, however, could have positive or negative feedback effects on these natural systems. Atmospheric concentrations of these gases, along with their rates of growth and atmospheric lifetimes, are presented in Table 1-1. A brief description of each greenhouse gas, its sources, and its role in the atmosphere is given below. The following section then explains the concept of GWPs, which are assigned to individual gases as a measure of their relative average global radiative forcing effect. Water Vapor (H_2O) . Overall, the most abundant and dominant greenhouse gas in the atmosphere is water vapor. Water vapor is neither long-lived nor well mixed in the atmosphere, varying spatially from 0 to 2 percent (IPCC 1996). In addition, atmospheric water can exist in several physical states including gaseous, liquid, and solid. Human activities are not believed to affect directly the average global concentration of water vapor, but the radiative forcing produced by the increased concentrations of other greenhouse gases may indirectly affect the hydrologic cycle. While a warmer atmosphere has an increased water holding capacity, increased concentrations of water vapor affects the formation of clouds, which can both absorb and reflect solar and terrestrial radiation. Aircraft contrails, which consist of water vapor and other aircraft emittants, are similar to clouds in their radiative forcing effects (IPCC 1999). Carbon Dioxide. In nature, carbon is cycled between various atmospheric, oceanic, land biotic, marine biotic, and mineral reservoirs. The largest fluxes occur between the atmosphere and terrestrial biota, and between the atmosphere and surface water of the oceans. In the atmosphere, carbon predominantly exists in its oxidized form as CO₂. Atmospheric CO₂ is part of this global carbon cycle, and therefore its fate is a complex function of geochemical and biological processes. CO₂ concentrations in the atmosphere increased from approximately 280 parts per million by volume (ppmv) in pre-industrial times to 379 ppmv in 2005, a 35 percent increase (IPCC 2007 and Hofmann 2004).^{7,8} The IPCC definitively states that "the present atmospheric CO₂ increase is caused by anthropogenic emissions of CO₂" (IPCC 2001). The predominant source of anthropogenic CO₂ emissions is the combustion of fossil fuels. Forest clearing, other biomass burning, and some non-energy production ^a The growth rate for atmospheric CH₄ has been decreasing from 1.4 ppb/yr in 1984 to less than 0 ppb/yr in 2001, 2004, and 2005. ^b IPCC (2007) identifies the rate of concentration change for SF₆ and CF₄ as linear. ^c Source: IPCC (1996). ^d No single lifetime can be defined for CO₂ because of the different rates of uptake by different removal processes. e This lifetime has been defined as an "adjustment time" that takes into account the indirect effect of the gas on its own residence time. $^{^{7}\}mathrm{The}$ pre-industrial period is considered as the time preceding the year 1750 (IPCC 2001). $^{^8}$ Carbon dioxide concentrations during the last 1,000 years of the preindustrial period (i.e., 750–1750), a time of relative climate stability, fluctuated by about ± 10 ppmv around 280 ppmv (IPCC 2001). processes (e.g., cement production) also emit notable quantities of CO₂. In its second assessment, the IPCC also stated that "[t]he increased amount of CO₂ [in the atmosphere] is leading to climate change and will produce, on average, a global warming of the earth's surface because of its enhanced greenhouse effect—although the magnitude and significance of the effects are not fully resolved" (IPCC 1996). *Methane*. CH₄ is primarily produced through anaerobic decomposition of organic matter in biological systems. Agricultural processes such as wetland rice cultivation, enteric fermentation in animals, and the decomposition of animal wastes emit CH₄, as does the decomposition of municipal solid wastes. CH₄ is also emitted during the production and distribution of natural gas and petroleum, and is released as a byproduct of coal mining and incomplete fossil fuel combustion. Atmospheric concentrations of CH₄ have increased by about 143 percent since 1750, from a pre-industrial value of about 722 ppb to 1,774 ppb in 2005, although the rate of increase has been declining. The IPCC has estimated that slightly more than half of the current CH₄ flux to the atmosphere is anthropogenic, from human activities such as agriculture, fossil fuel use, and waste disposal (IPCC 2007). CH₄ is removed from the atmosphere through a reaction with the hydroxyl radical (OH) and is ultimately converted to CO₂. Minor removal processes also include reaction with chlorine in the marine boundary layer, a soil sink, and stratospheric reactions. Increasing emissions of CH₄ reduce the concentration of OH, a feedback that may increase the atmospheric lifetime of CH₄ (IPCC 2001). Nitrous Oxide. Anthropogenic sources of N₂O emissions include agricultural soils, especially production of nitrogenfixing crops and forages, the use of synthetic and manure fertilizers, and manure deposition by livestock; fossil fuel combustion, especially from mobile combustion; adipic (nylon) and nitric acid production; wastewater treatment and waste combustion; and biomass burning. The atmospheric concentration of N₂O has increased by 18 percent since 1750, from a pre-industrial value of about 270 ppb to 319 ppb in 2005, a concentration that has not been exceeded during the last thousand years. N2O is primarily removed from the atmosphere by the photolytic action of sunlight in the stratosphere (IPCC 2007). Ozone. Ozone is present in both the upper stratosphere, 9 where it shields the Earth from harmful levels of ultraviolet radiation, and at lower concentrations in the troposphere, 10 where it is the main component of anthropogenic photochemical "smog." During the last two decades, emissions of anthropogenic chlorine and bromine-containing halocarbons, such as CFCs, have depleted stratospheric ozone concentrations. This loss of ozone in the stratosphere has resulted in negative radiative forcing, representing an indirect effect of anthropogenic emissions of chlorine and bromine compounds (IPCC 1996). The depletion of stratospheric ozone and its radiative forcing was expected to reach a maximum in about 2000 before starting to recover, with detection of such recovery not expected to occur much before 2010 (IPCC 2001). The past increase in tropospheric ozone, which is also a greenhouse gas, is estimated to provide the third largest increase in direct radiative forcing since the pre-industrial era, behind CO₂ and CH₄. Tropospheric ozone is produced from complex chemical reactions of volatile organic compounds mixing with NO_x in the presence of sunlight. The tropospheric concentrations of ozone and these other pollutants are short-lived and, therefore, spatially variable (IPCC 2001). Halocarbons, Perfluorocarbons, and Sulfur Hexafluoride. Halocarbons are, for the most part, man-made chemicals that have both direct and indirect radiative forcing effects. Halocarbons that contain chlorine (CFCs, HCFCs, methyl chloroform, and carbon tetrachloride) and bromine (halons, methyl bromide, and hydrobromofluorocarbons [HBFCs]) result in stratospheric ozone depletion and are therefore controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer. Although CFCs and HCFCs include potent global warming gases, their net radiative forcing effect on the atmosphere is reduced because they cause stratospheric ozone depletion, which itself is an ⁹The stratosphere is the layer from the troposphere up to roughly 50 kilometers. In the lower regions the temperature is nearly constant but in the upper layer the temperature increases rapidly because of sunlight absorption by the ozone layer. The ozone layer is the part of the stratosphere from 19 kilometers up to 48 kilometers where the concentration of ozone reaches up to 10 parts per million. ¹⁰The troposphere is the layer from the ground up to 11 kilometers near the poles and up to 16 kilometers in equatorial regions (i.e., the lowest layer of the atmosphere where people live). It contains roughly 80 percent of the mass of all gases in the atmosphere and is the site for most weather processes, including most of the water vapor and clouds. important greenhouse gas in addition to shielding the earth from harmful levels of ultraviolet radiation. Under the *Montreal Protocol*, the United States phased out the production and importation of halons by 1994 and of CFCs by 1996. Under the Copenhagen Amendments to the *Protocol*, a cap was placed on the production and importation of HCFCs by non-Article 5¹¹ countries beginning in 1996, and then followed by a complete phase-out by the year 2030. While ozone depleting gases covered under the *Montreal Protocol* and its Amendments are not covered by the UNFCCC; they are reported in this Inventory under Annex 6.2 of this report for informational purposes. HFCs, PFCs, and SF₆ are not ozone depleting substances, and therefore are not covered under the Montreal Protocol. They are, however, powerful greenhouse gases. HFCs are primarily used as replacements for ozone depleting substances but also emitted as a byproduct of the HCFC-22 manufacturing process. Currently, they have a small aggregate radiative forcing impact, but it is anticipated that their contribution to overall radiative forcing will increase (IPCC 2001). PFCs and SF₆ are predominantly emitted from various industrial processes including aluminum smelting, semiconductor manufacturing, electric power transmission and distribution, and magnesium casting. Currently, the radiative forcing impact of PFCs and SF₆ is also small, but they have a significant growth rate, extremely long atmospheric lifetimes, and are strong absorbers of infrared radiation, and therefore have the potential to influence climate far into the future (IPCC 2001). Carbon Monoxide. Carbon monoxide has an indirect radiative forcing effect by elevating concentrations of CH₄ and tropospheric ozone through chemical reactions with other atmospheric constituents (e.g., the hydroxyl radical, OH) that would otherwise assist in destroying CH₄ and tropospheric ozone. Carbon monoxide is created when carbon-containing fuels are burned incompletely. Through natural processes in the atmosphere, it is eventually oxidized to CO₂. Carbon monoxide concentrations are both short-lived in the atmosphere and spatially variable. Nitrogen Oxides. The primary climate change effects of nitrogen oxides (i.e., NO and NO₂) are indirect and result from their role in promoting the formation of ozone in the troposphere and, to a lesser degree, lower stratosphere, where it has positive radiative forcing effects. ¹² Additionally, NO_x emissions from aircraft are likely to decrease CH₄ concentrations, thus having a negative radiative forcing effect (IPCC 1999). Nitrogen oxides are created from lightning, soil microbial activity, biomass burning (both natural and anthropogenic fires), fuel combustion, and, in the stratosphere, from the photo-degradation of N₂O. Concentrations of NO_x are both relatively short-lived in the atmosphere and spatially variable. Non-CH₄ volatile Organic Compounds (NMVOCs). Non-CH₄ volatile organic compounds include substances such as propane, butane, and ethane. These compounds participate, along with NO_x, in the formation of tropospheric ozone and other photochemical oxidants. NMVOCs are emitted primarily from transportation and industrial processes, as well as biomass burning and non-industrial consumption of organic solvents. Concentrations of NMVOCs tend to be both short-lived in the atmosphere and spatially variable. Aerosols. Aerosols are extremely small particles or liquid droplets found in the atmosphere. They can be produced by natural events such as dust storms and volcanic activity, or by anthropogenic processes such as fuel combustion and biomass burning. Aerosols affect radiative forcing differently than greenhouse gases, and their radiative effects occur through direct and indirect mechanisms: directly by scattering and absorbing solar radiation; and indirectly by increasing droplet counts that modify the formation, precipitation efficiency, and radiative properties of clouds. Aerosols are removed from the atmosphere relatively rapidly by precipitation. Because aerosols generally have short atmospheric lifetimes, and have concentrations and compositions that vary regionally, spatially, and temporally, their contributions to radiative forcing are difficult to quantify (IPCC 2001). The indirect radiative forcing from aerosols is typically divided into two effects. The first effect involves decreased droplet size and increased droplet concentration resulting from an increase in airborne aerosols. The second effect ¹¹ Article 5 of the *Montreal Protocol* covers several groups of countries, especially developing countries, with low consumption rates of ozone depleting substances. Developing countries with per capita consumption of less than 0.3 kg of certain ozone depleting substances (weighted by their ozone depleting potential) receive financial assistance and a grace period of ten additional years in the phase-out of ozone depleting substances. $^{^{12}}$ NO_x emissions injected higher in the stratosphere, primarily from fuel combustion emissions from high altitude supersonic aircraft, can lead to stratospheric ozone depletion. involves an increase in the water content and lifetime of clouds due to the effect of reduced droplet size on precipitation efficiency (IPCC 2001). Recent research has placed a greater focus on the second indirect radiative forcing effect of aerosols. Various categories of aerosols exist, including naturally produced aerosols such as soil dust, sea salt, biogenic aerosols, sulfates, and volcanic aerosols, and anthropogenically manufactured aerosols such as industrial dust and carbonaceous aerosols¹³ (e.g., black carbon, organic carbon) from transportation, coal combustion, cement production, waste incineration, and biomass burning. The net effect of aerosols on radiative forcing is believed to be negative (i.e., net cooling effect on the climate), although because they remain in the atmosphere for only days to weeks, their concentrations respond rapidly to changes in emissions. ¹⁴ Locally, the negative radiative forcing effects of aerosols can offset the positive forcing of greenhouse gases (IPCC 1996). "However, the aerosol effects do not cancel the global-scale effects of the much longer-lived greenhouse gases, and significant climate changes can still result" (IPCC 1996). The IPCC's Third Assessment Report notes that "the indirect radiative effect of aerosols is now understood to also encompass effects on ice and mixed-phase clouds, but the magnitude of any such indirect effect is not known, although it is likely to be positive" (IPCC 2001). Additionally, current research suggests that another constituent of aerosols, black carbon, may have a positive radiative forcing (Jacobson 2001). The primary anthropogenic emission sources of black carbon include diesel exhaust and open biomass burning. ### **Global Warming Potentials** A global warming potential is a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas (see Table 1-2). It is defined as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kilogram (kg) of a trace substance relative to that of 1 kg of a reference gas (IPCC 2001). Direct radiative effects occur when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The reference gas used is CO₂, and therefore GWP weighted emissions are measured in teragrams of CO₂ equivalents (Tg CO₂ Eq.)¹⁵ The relationship between gigagrams (Gg) of a gas and Tg CO₂ Eq. can be expressed as follows: Tg CO₂ Eq. = (Gg of gas) × (GWP) × $$\left(\frac{\text{Tg}}{1,000 \text{ Gg}}\right)$$ where, $$Tg CO_2 Eq. = Teragrams of CO_2 Equivalents $$Gg = Gigagrams (equivalent to a thousand metric tons)$$ $$GWP = Global Warming Potential$$ $$Tg = Teragrams$$$$ GWP values allow for a comparison of the impacts of emissions and reductions of different gases. According to the IPCC, GWPs typically have an uncertainty of ± 35 percent. The parties to the UNFCCC have also agreed to use GWPs based upon a 100-year time horizon although other time horizon values are available. Greenhouse gas emissions and removals should be presented on a gas-by-gas basis in units of mass... In addition, consistent with decision 2/CP.3, Parties should report aggregate emissions and removals of greenhouse gases, expressed in CO₂ equivalent terms at summary inventory level, using GWP values provided by the IPCC in its Second Assessment Report... based on the effects of greenhouse gases over a 100-year time horizon.¹⁶ Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) tend to be evenly distributed throughout the atmosphere, and consequently global average concentrations can be ¹³ Carbonaceous aerosols are aerosols that are comprised mainly of organic substances and forms of black carbon (or soot) (IPCC 2001). ¹⁴ Volcanic activity can inject significant quantities of aerosol producing sulfur dioxide and other sulfur compounds into the stratosphere, which can result in a longer negative forcing effect (i.e., a few years) (IPCC 1996). ¹⁵ Carbon comprises 12/44^{ths} of carbon dioxide by weight. ¹⁶ Framework Convention on Climate Change; http://unfccc.int/resource/docs/cop8/08.pdf; 1 November 2002; Report of the Conference of the Parties at its eighth session; held at New Delhi from 23 October to 1 November 2002; Addendum; Part One: Action taken by the Conference of the Parties at its eighth session; Decision -/CP.8; Communications from Parties included in Annex I to the Convention: Guidelines for the Preparation of National Communications by Parties Included in Annex I to the Convention, Part 1: UNFCCC reporting guidelines on annual inventories; p. 7. (UNFCCC 2003). Table 1-2: Global Warming Potentials and Atmospheric Lifetimes (Years) Used in this Report | Gas | Atmospheric
Lifetime | GWP ^a | | |--------------------------------|-------------------------|------------------|--| | CO ₂ | 50–200 | 1 | | | CH₄ ^b | 12±3 | 21 | | | N_2O | 120 | 310 | | | HFC-23 | 264 | 11,700 | | | HFC-32 | 5.6 | 650 | | | HFC-125 | 32.6 | 2,800 | | | HFC-134a | 14.6 | 1,300 | | | HFC-143a | 48.3 | 3,800 | | | HFC-152a | 1.5 | 140 | | | HFC-227ea | 36.5 | 2,900 | | | HFC-236fa | 209 | 6,300 | | | HFC-4310mee | 17.1 | 1,300 | | | CF ₄ | 50,000 | 6,500 | | | C_2F_6 | 10,000 | 9,200 | | | C ₄ F ₁₀ | 2,600 | 7,000 | | | C ₆ F ₁₄ | 3,200 | 7,400 | | | SF ₆ | 3,200 | 23,900 | | Source: (IPCC 1996) determined. The short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, ozone precursors (e.g., NO_x and NMVOCs), and tropospheric aerosols (e.g., SO₂ products and carbonaceous particles), however, vary regionally, and consequently it is difficult to quantify their global radiative forcing impacts. No GWP values are attributed to these gases that are short-lived and spatially inhomogeneous in the atmosphere. # 1.2. Institutional Arrangements The U.S. Environmental Protection Agency (EPA), in cooperation with other U.S. government agencies, prepares the Inventory of U.S. Greenhouse Gas Emissions and Sinks. A wide range of agencies and individuals are involved in supplying data to, reviewing, or preparing portions of the U.S. Inventory—including federal and state government authorities, research and academic institutions, industry associations, and private consultants. Within EPA, the Office of Atmospheric Programs (OAP) is the lead office responsible for the emission calculations provided in the Inventory, as well as the completion of the National Inventory Report and the Common Reporting Format tables. The Office of Transportation and Air Quality (OTAQ) is also involved in calculating emissions for the Inventory. While the U.S. Department of State officially submits the annual Inventory to the UNFCCC, EPA's OAP serves as the focal point for technical questions and comments on the U.S. Inventory. The staff of OAP and OTAQ coordinates the annual methodological choice, activity data collection, and emission calculations at the individual source category level. Within OAP, an Inventory Coordinator compiles the entire Inventory into the proper reporting format for submission to the UNFCCC, and is responsible for the collection and consistency of crosscutting issues in the Inventory. Several other government agencies contribute to the collection and analysis of the underlying activity data used in the Inventory calculations. Formal relationships exist between EPA and other U.S. agencies that provide official data for use in the Inventory. The U.S. Department of Energy's Energy Information Administration provides national fuel consumption data and the U.S. Department of Defense provides military fuel consumption and bunker fuels. Informal relationships also exist with other U.S. agencies to provide activity data for use in EPA's emission calculations. These include: the U.S. Department of Agriculture, the U.S. Geological Survey, the Federal Highway Administration, the Department of Transportation, the Bureau of Transportation Statistics, the Department of Commerce, the National Agricultural Statistics Service, and the Federal Aviation Administration. Academic and research centers also provide activity data and calculations to EPA, as well as individual companies participating in voluntary outreach efforts with EPA. Finally, the U.S. Department of State officially submits the Inventory to the UNFCCC each April. ## 1.3. Inventory Process EPA has a decentralized approach to preparing the annual U.S. Inventory, which consists of a National Inventory Report (NIR) and Common Reporting Format (CRF) tables. The Inventory Coordinator at EPA is responsible for compiling all emission estimates, and ensuring consistency and quality and contractors familiar with the sources. A multi-stage process for collecting information from the ^a 100-year time horizon ^b The GWP of CH₄ includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included. #### Box 1-1: The IPCC Fourth Assessment Report and Global Warming Potentials In 2007, the IPCC published its Fourth Assessment Report (AR4), which provided an updated and more comprehensive scientific assessment of climate change. Within this report, the GWPs of several gases were revised relative to the SAR and the IPCC's Third Assessment Report (TAR) (IPCC 2001). Thus the GWPs used in this report have been updated twice by the IPCC; although the SAR GWPs are used throughout this report, it is useful to review the changes to the GWPs and the impact such improved understanding has on the total GWP-weighted emissions of the United States. Since the SAR and TAR, the IPCC has applied an improved calculation of CO_2 radiative forcing and an improved CO_2 response function. The GWPs are drawn from IPCC/TEAP (2005) and the TAR, with updates for those cases where new laboratory or radiative transfer results have been published. Additionally, the atmospheric lifetimes of some gases have been recalculated. In addition, the values for radiative forcing and lifetimes have been recalculated for a variety of halocarbons, which were not presented in the SAR. Table 1-3 presents the new GWPs, relative to those presented in the SAR. Table 1-3: Comparison of 100-Year GWPs | Gas | SAR | TAR | AR4 | Change from SAR | | |-------------------|--------|--------|--------|-----------------|---------| | | | | | TAR | AR4 | | CO ₂ | 1 | 1 | 1 | NC | 0 | | CH ₄ * | 21 | 23 | 25 | 2 | 4 | | N_2O | 310 | 296 | 298 | (14) | (12) | | HFC-23 | 11,700 | 12,000 | 14,800 | 300 | 3,100 | | HFC-32 | 650 | 550 | 675 | (100) | 25 | | HFC-125 | 2,800 | 3,400 | 3,500 | 600 | 700 | | HFC-134a | 1,300 | 1,300 | 1,430 | NC | 130 | | HFC-143a | 3,800 | 4,300 | 4,470 | 500 | 670 | | HFC-152a | 140 | 120 | 124 | (20) | (16) | | HFC-227ea | 2,900 | 3,500 | 3,220 | 600 | 320 | | HFC-236fa | 6,300 | 9,400 | 9,810 | 3,100 | 3,510 | | HFC-4310mee | 1,300 | 1,500 | 1,640 | 200 | 340 | | CF ₄ | 6,500 | 5,700 | 7,390 | (800) | 890 | | C_2F_6 | 9,200 | 11,900 | 12,200 | 2,700 | 3,000 | | C_4F_{10} | 7,000 | 8,600 | 8,860 | 1,600 | 1,860 | | C_6F_{14} | 7,400 | 9,000 | 9,300 | 1,600 | 1,900 | | SF ₆ | 23,900 | 22,200 | 22,800 | (1,700) | (1,100) | Source: (IPCC 2007, IPCC 2001) NC (No Change) Note: Parentheses indicate negative values. To comply with international reporting standards under the UNFCCC, official emission estimates are reported by the United States using SAR GWP values. The UNFCCC reporting guidelines for national inventories¹⁷ were updated in 2002 but continue to require the use of GWPs from the SAR so that current estimates of aggregate greenhouse gas emissions for 1990 through 2006 are consistent and comparable with estimates developed prior to the publication of the TAR and AR4. For informational purposes, emission estimates that use the updated GWPs are presented in detail in Annex 6.1 of this report. All estimates provided throughout this report are also presented in unweighted units. throughout the NIR and CRF tables. Emission calculations for individual sources are the responsibility of individual source leads, who are most familiar with each source category and the unique characteristics of its emissions profile. The individual source leads determine the most appropriate methodology and collect the best activity data to use in the emission calculations, based upon their expertise in the source category, as well as coordinating with researchers ^{*} The GWP of CH_4 includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO_2 is not included. ¹⁷ See http://unfccc.int/resource/docs/cop8/08.pdf.